Exercise 88

Air is being pumped into a spherical weather balloon. At any time t, the volume of the balloon is $V(t)$ and its radius is $r(t)$.
(a) What do the derivatives $d V / d r$ and $d V / d t$ represent?
(b) Express $d V / d t$ in terms of $d r / d t$.

Solution

$d V / d t$ is the rate that volume changes as time increases, whereas $d V / d r$ is the rate that volume changes as the radius increases. The volume of a sphere is known to be

$$
V=\frac{4}{3} \pi r^{3} .
$$

If the radius changes as a function of time, that is, $r=r(t)$, then

$$
V=\frac{4}{3} \pi[r(t)]^{3} .
$$

Differentiate the volume with respect to t.

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{d}{d t}\left\{\frac{4}{3} \pi[r(t)]^{3}\right\} \\
& =\frac{4}{3} \pi \frac{d}{d t}\left\{[r(t)]^{3}\right\} \\
& =\frac{4}{3} \pi\left\{3[r(t)]^{2} \cdot \frac{d}{d t}[r(t)]\right\} \\
& =\frac{4}{3} \pi\left\{3[r(t)]^{2} \cdot \frac{d r}{d t}\right\} \\
& =4 \pi[r(t)]^{2} \frac{d r}{d t}
\end{aligned}
$$

